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Abstract. We study the spin- and flavour-dependent SU(6) violations in the baryon spectrum by means
of a Gürsey-Radicati mass formula. The average energy of each SU(6) multiplet is described using the
SU(6)-invariant interaction given by a hypercentral potential containing a linear and a hyper-Coulomb
term. We show that the nonstrange- and strange-baryon masses are, in general, fairly well reproduced and
moreover that the Gürsey-Radicati formula holds in a satisfactory way also for the excited states up to
2 GeV.

PACS. 12.39.-x Phenomenological quark models – 12.39.Pn Potential models – 11.30.Hv General theory
of fileds and particles: Flavor symmetries – 11.30.Ly General theory of fields and particles: Other internal
and higher symmetries

1 Introduction

Different versions of Constituent-Quark Models (CQM)
have been proposed in the last decades in order to de-
scribe the baryon properties. What they have in common
is the fact that the three-quark interaction can be sepa-
rated in two parts: the first one, containing the confine-
ment interaction, is spin and flavour independent and it
is therefore SU(6) invariant, while the second violates the
SU(6) symmetry. This separation has been supported by
the very first Lattice QCD calculations [1] and is con-
firmed by the most recent ones [2,3]. The various CQMs
differ in the way the SU(6) invariance is violated. One of
the most popular ways was the introduction of a hyperfine
(spin-spin) interaction [4–7]; however in many studies a
spin- and isospin- [8–11] or a spin- and flavour-dependent
interaction [8–10] has been considered. In this paper we
study the symmetries of the baryon spectrum using a very
simple approach based on the Gürsey-Radicati (GR) mass
formula [12]. It is well known that the baryon spectrum
exhibits an approximated SU(6) symmetry and that the
GR mass formula, despite its simplicity, describes quite
well the way this symmetry is broken, at least in the
lower part of the baryon spectrum. Our idea is to build
up a very simple model based on the GR mass formula,
to fix the parameters of the model in order to obtain the
best description (within the limits of this approach) of
the baryon spectrum. The model we propose is a sim-
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ple CQM where the SU(6)-invariant part of the Hamilto-
nian is the same as in the Hypercentral Constituent-Quark
Model (hCQM) [6,7] and where the SU(6) symmetry is
broken by a GR-inspired interaction.

In the second section we briefly remind the hyper-
central CQM and its results, then in the third section we
construct the model using the GR as the SU(6)-breaking
term. In the fourth section we give the results obtained by
fitting the GR parameters to the strange- and nonstrange-
baryon energies and we compare the spectrum with the
experimental data. Finally, we discuss our results.

2 The hypercentral model

The experimental 4- and 3-star nonstrange resonances
can be arranged in SU(6) multiplets. This means that
the quark dynamics has a dominant SU(6)-invariant part,
which accounts for the average multiplet energies. In the
Hypercentral Constituent-Quark Model it is assumed to
be given by the hypercentral potential [6]

V (x) = −
τ

x
+ αx, (1)

where

x =

√

ρ2 + λ2, (2)

is the hyper-radius and ρ and λ are the Jacobi coordi-
nates describing the internal quark motion. Interactions
of the type linear plus Coulomb-like have been used for
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a long time for the meson sector, e.g. the Cornell poten-
tial. This form has also been obtained in recent Lattice
QCD calculations [2,3] for SU(3)-invariant static quark
sources. Introducing, along with the hypercentral poten-
tial, a standard hyperfine interaction [4] which breaks the
SU(6) symmetry, the hCQM has given a fair description of
the nonstrange-baryon spectrum [6] and of other various
physical quantities of interest: the photocouplings [13], the
electromagnetic transition amplitudes [14], the elastic nu-
cleon form factors [15] and the ratio between the electric
and magnetic proton form factors [16].

Subsequently, in order to improve the description of
the nonstrange spectrum, an isospin-dependent SU(6)-
violating term has been introduced [11]. The complete
interaction used in this latter case is given by

Hint = V (x) +HS +HI +HSI , (3)

where V (x) is the linear–plus–hyper-Coulomb SU(6)-
invariant potential of eq. (1), while HS is the hyperfine
interaction and HI, HSI are, respectively, isospin– and
spin-isospin–dependent terms. Similar results can be ob-
tained in a relativized version of the model [17], in which
the quark kinetic energy has the correct relativistic form.

The preceding results show that both spin- and
isospin- (or flavour-) dependent terms in the quark Hamil-
tonian are important. Their contributions can be consid-
ered as perturbative SU(6)-violating terms added to the
unperturbed SU(6)-invariant energies provided by the hy-
percentral potential of eq. (1).

3 The strange-baryon spectrum and the

Gürsey-Radicati mass formula

The spin- and isospin-dependent interactions considered
in the previous section are not the only source of SU(6)
violation. In order to study the strange-baryon spectrum,
one has to consider the SU(3) violation produced by the
differences in the quark masses. The well-known Gell-
Mann–Okubo (GMO) mass formula [18] made use of a
λ8 violation of SU(3) in order to describe the mass split-
tings within the various SU(3) multiplets; according to
this formula the mass M of a baryon belonging to a given
SU(3) multiplet can be expressed as

M = M0 +DY + E

[

T (T + 1)−
1

4
Y 2

]

, (4)

where M0 is the average energy value of the SU(3) multi-
plet, Y is the hypercharge, T is the isospin of the baryon
and D and E are parameters to be fitted. A simple way
to interpret the origin of such a violation is just to at-
tribute to the strange quark a mass different from the up
and down quark ones. The calculations were performed
without reference to any explicit dynamical model, but
using standard group-theoretical methods. The unknown
parameters D and E in the SU(3)-violating terms can be
in principle fitted to the experimental masses, thereby pro-
viding a phenomenological way to describe the spectrum.

A similar approach for the description of the splittings
within the SU(6) baryon multiplets is provided by the
Gürsey-Radicati mass formula [12]. In the original paper
the mass formula reads

M = M0+CS(S+1)+DY +E

[

T (T + 1)−
1

4
Y 2

]

, (5)

where S is the spin. Equation (5) can be rewritten in terms
of Casimir operators in the following way:

M = M0 + CC2[SUS(2)] +DC1[UY (1)]

+E

[

C2[SUI(2)]−
1

4
(C1[UY (1)])

2

]

, (6)

where C2[SUS(2)] and C2[SUI(2)] are the SU(2)
(quadratic) Casimir operators for spin and isospin, respec-
tively, and C1[UY (1)] is the Casimir operator for the U(1)
subgroup generated by the hypercharge Y . The presence
of a spin-dependent term is necessary since states belong-
ing to a definite SU(6) multiplet do not have the same
spin value. This mass formula has proven to be success-
ful in the description of the ground-state baryon masses;
however, as stated by the authors themselves, eq. (6) is
not the most general mass formula that can be written on
the basis of a broken SU(6) symmetry.

In order to generalize eq. (6), one can consider a dy-
namical spin-flavour symmetry SUSF (6) and write the fol-
lowing chain of subgroups:

SUSF (6)⊃SUF (3)⊗SUS(2)⊃SUI(2)⊗UY (1)⊗SOS(2),
↓ ↓ ↓ ↓ ↓ ↓

(λ1, . . . λ5) (λf , µf ) S I Y MS

(7)
where in the bottom row we report the quantum numbers
which label the irreducible representations of the corre-
sponding groups. Therefore, one can describe the SUSF (6)
symmetry-breaking mechanism by generalizing eq. (6) as

M = M0 +AC2[SUSF (6)] +BC2[SUF (3)]

+CC2[SUS(2)] +DC1[UY (1)]

+E

(

C2[SUI(2)]−
1

4
(C1[UY (1)])

2

)

. (8)

The generalized Gürsey-Radicati mass formula eq. (8) can
be used to describe the whole baryon spectrum, provided
that two conditions are fulfilled. The first condition is the
possibility of using the same splitting coefficients for dif-
ferent SU(6) multiplets. This seems actually to be the
case, as shown by the algebraic approach to the baryon
spectrum [8], where a formula similar to eq. (8) has been
applied. The second condition is given by the possibility
of getting reliable values for the unperturbed mass val-
ues M0. Our idea is to use for this purpose the SU(6)-
invariant part of the hCQM, which provides a good de-
scription of the nonstrange-baryon spectrum and to intro-
duce a Gürsey-Radicati–inspired SU(6)-breaking interac-
tion to describe the splittings within each SU(6) multiplet.
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We shall therefore make use of the following three-quark
Hamiltonian:

H = H0 +HGR (9)

with

H0 = 3m+
p2
λ

2m
+
p2
ρ

2m
+ V (x) ,

and

HGR = +AC2[SUSF (6)] +BC2[SUF (3)] + CC2[SUS(2)]

+DC1[UY (1)] + E

(

C2[SUI(2)]−
1

4
(C1[UY (1)])

2

)

,

where V (x) is the hypercentral potential of eq. (1), and m
is the constituent-quark mass. It has to be remarked that,
in order to simplify the solving procedure, the constituent-
quark masses are assumed to be the same for all the quark
flavours (mu = md = ms = m); therefore, within this
approximation, the SU(3) symmetry is only broken dy-
namically by the spin- and flavour-dependent terms in the
Hamiltonian. In other words, in this approximation, the
effects of the strange-quark mass on the baryon spectrum
are described by the two terms of eq. (4).

The eigenproblem of H0 can be solved numerically,
the spin-flavour part of the resulting eigenfunctions has
definite properties under transformations of the SUSF (6)
group and its subgroups. Using the notation of eq. (7) the
spin-flavour part of the wave function can be written as

|(λ1, λ2, λ3, λ4, λ5), (λf , µf ), I, Y, S,MS〉 . (10)

Often the irreducible representations are identified not by
the quantum numbers but by their dimension. Thus, for
example,

∣

∣

∣

∣

(3, 0, 0, 0, 0), (2, 1), I =
1

2
, Y = 1, S =

1

2
,MS

〉

≡ |281/2, [56, 0
+], N〉

is the spin-flavour part of the nucleon wave function. The
notation used is

|2S+1dim(SU(3))J , [dim(SU(6)), LP ], X〉,

where dim(SU(n)) is the dimension of the SU(n) repre-
sentation, S and L are the total spin and orbital angular
momentum of the quark system, respectively, J and P are
the spin and parity of the resonance and X = N,∆, . . .
denotes the type of baryon resonance.

The action of HGR on the eigenstates of H0 is com-
pletely identified by the expectation values of the Casimir
operators on the states of eq. (10),

〈C2[SUSF (6)]〉 =







45/4 for [56],
33/4 for [70],
21/4 for [20],

〈C2[SUF (3)]〉 =







3 for [8],
6 for [10],
0 for [1],

〈C2[SUI(2)]〉 = I(I + 1),

〈C1[UY (1)]〉 = Y,

〈C2[SUS(2)]〉 = S(S + 1). (11)

Table 1. The fitted values of the parameters of the Hamilto-
nian (9). Column (I) corresponds to the analytical fixing proce-
dure of eq. (13), while column (II) contains the values obtained
with a global fit to the experimental resonance masses.

Parameter (I) (II)

α = 1.4 fm−2 2.1 fm−2

τ = 4.8 3.9
A = −13.8 MeV −11.9 MeV
B = 7.1 MeV 11.7 MeV
C = 38.3 MeV 30.8 MeV
D = −197.3 MeV −197.3 MeV
E = 38.5 MeV 38.5 MeV

Therefore, the mass of each baryon state |B〉 can be writ-
ten as

〈B|H|B〉 = Eγν + 〈B|HGR|B〉 , (12)

where Eγν denotes the eigenvalue of H0 with γ = 2n+lρ+
lλ (n being a non-negative integer), ν denotes the number
of nodes of the space three-quark wave functions and lρ,
lλ are the orbital angular momenta corresponding to the
Jacobi coordinates (see, e.g., [6]).

Since HGR does not depend on the spatial degrees
of freedom, the SU(6)-breaking term introduced in this
model is diagonal in the baryon states, this means that
the Gürsey-Radicati term is able to give energy splittings
within the SU(6) multiplets, but no configuration mixing
effects can arise from such an interaction1. Therefore, the
model is expected to fail in the description of all those
observables where a good description of the three-quark
wave function is crucial.

4 Results

The parameters in HGR can be determined in order to
reproduce the experimental values of the energy splittings.
We first adopt an analytical procedure by means of which
we choose a limited number of well-known resonances and
express their mass differences using HGR and the Casimir
operator expectation values given in the previous section.
We list in the following the analytical expressions for the
mass differences of the chosen pairs of resonances:

(N(1650)S11−N(1535)S11) = 3C ,

(∆(1232)P33−N(938)P11) = 9B + 3C + 3E ,

(N(1535)S11−N(1440)P11) = (E10 − E01) + 12A ,

(Σ(1193)P11−N(938)P11) =
3

2
E −D ,

(Λ(1116)P01−N(938)P11) = −D −
1

2
E . (13)

Looking at eq. (13) it is easy to understand that for the de-
scription of the nonstrange-baryon spectrum the only rele-
vant parameters are A, C and the combination (3B + E).

1 The kind of problems that one can face neglecting the spa-
tial dependence on the SU(6)-breaking part is discussed by
Jennings and Maltman [19].
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Fig. 1. The energy levels (black lines) for the 3- and 4-star
resonances obtained with the Hamiltonian (9) fixing the pa-
rameters as described in eq. (13). The numerical values of the
calculated masses of baryon resonances are reported in table 2,

column M
(I)
calc. The values of the parameters of the Hamiltonian

are reported in column (I) of table 1. The experimental data
are taken from PDG [20] (gray boxes).

It should be noted that, in order to apply the Gürsey-
Radicati mass formula to the excited states, it is necessary
to know the coefficient A of the SU(6) Casimir operator
and the excited energies provided by the CQM.

Once the SU(6)-breaking interaction has been deter-
mined, the parameters of H0 (α and τ) which lead to the
unperturbed energies Eγν can be fixed by a minimiza-
tion procedure on the nonstrange-baryon spectrum. The
complete list of the parameter values is reported in ta-
ble 1, column (I). In this way the Eγν levels are placed
close to the central mass value of each SU(6) multiplet.
As shown in eq. (13), a further adjustment to the unper-
turbed multiplet energy is provided by the presence of the
SU(6) Casimir operator. The resulting spectrum is shown

in fig. 1 and table 2, columnM
(I)
calc. Despite the simple form

of the SU(6)-breaking interaction, the general features of
the spectrum are fairly well reproduced, especially in the
low-energy part. It has to be noted in particular that,
besides the ground-state masses which have been fixed
through eq. (13), the predicted masses of the Σ∗, Ξ, Ξ∗

and Ω states are nicely close to the experimental values.
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Fig. 2. The energy levels (black lines) for the 3- and 4-star res-
onances obtained with the Hamiltonian (9) fixing the Hamilto-
nian parameters by a fitting procedure. The resulting values of
the parameters are reported in column (II) of table 1, while the
numerical values of the calculated masses are also reported in

table 2, column M
(II)
calc. The experimental data are taken from

PDG [20] (gray boxes).

The second approach followed in the application of the
Gürsey-Radicati mass formula is to fit all parameters at
the same time in order to obtain the best reproduction of
the spectrum of the 3- and 4-star resonances2. The fitted
parameters are reported in table 1, column (II), while the
resulting spectrum is shown in fig. 2 and the corresponding

numerical values are given in table 2, column M
(II)
calc. The

result is a better overall agreement with the experimen-
tal data, even if the prediction in the nonstrange sector
is worsened. For this reason, we prefer the values of the
parameters obtained with the previous analytical method
since we have used only well-known and well-established
resonances in order to fix the parameters.

In both cases a nonzero value of the SU(6) Casimir co-
efficient is needed in order to reproduce the average multi-
plet energies. We have also tried a fit imposing A = 0. The

2 The PDG [20] quotes a three-star Ξ(1690)-resonance; how-
ever, since the values of spin and parity are not known, this
resonance cannot be identified with a definite eigenstate of the
Hamiltonian and therefore this state has been excluded from
our analysis.
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Table 2. Masses of baryon resonances (all values expressed in MeV) calculated with the Hamiltonian of eq. (9). The column

M
(I)
calc contains the baryon masses calculated with the set of parameters of table 1, column (I), obtained with the analytical fixing

procedure (eq. (13)), while the column M
(II)
calc contains the baryon masses calculated with the parameters of table 1, column (II),

obtained with a global fit to all the 3- and 4-star experimental data [20].

Baryon Status Mass State M
(I)
calc M

(II)
calc

N(938)P11 **** 938 281/2[56, 0
+] 938.0 938.0

N(1440)P11 **** 1430–1470 281/2[56, 0
+] 1448.7 1455.8

N(1520)D13 **** 1515–1530 283/2[70, 1
−] 1543.7 1492.9

N(1535)S11 **** 1520–1555 281/2[70, 1
−] 1543.7 1492.9

N(1650)S11 **** 1640–1680 481/2[70, 1
−] 1658.6 1585.3

N(1675)D15 **** 1670–1685 485/2[70, 1
−] 1658.6 1585.3

N(1680)F15 **** 1670–1685 285/2[56, 2
+] 1651.4 1636.6

N(1700)D13 *** 1650–1750 483/2[70, 1
−] 1658.6 1585.3

N(1710)P11 *** 1680–1740 281/2[56, 0
+] 1795.4 1760.6

N(1720)P13 **** 1650–1750 283/2[56, 2
+] 1651.4 1636.6

∆(1232)P33 **** 1230–1234 4103/2[56, 0
+] 1232.0 1251.2

∆(1600)P33 *** 1550–1700 4103/2[56, 0
+] 1683.0 1768.9

∆(1620)S31 **** 1615–1675 2101/2[70, 1
−] 1722.8 1713.7

∆(1700)D33 **** 1670–1770 2103/2[70, 1
−] 1722.8 1713.7

∆(1905)F35 **** 1870–1920 4105/2[56, 2
+] 1945.4 1949.7

∆(1910)P31 **** 1870–1920 4101/2[56, 2
+] 1945.4 1949.7

∆(1920)P33 *** 1900–1970 4103/2[56, 0
+] 2089.4 2073.8

∆(1950)F37 **** 1940–1960 4107/2[56, 2
+] 1945.4 1949.7

Σ(1193)P11 **** 1193 281/2[56, 0
+] 1193.0 1193.0

Σ(1660)P11 *** 1630–1690 281/2[56, 0
+] 1703.7 1710.7

Σ(1670)D13 **** 1665–1685 283/2[70, 1
−] 1798.7 1747.9

Σ(1750)S11 *** 1730–1800 281/2[70, 1
−] 1798.7 1747.9

Σ(1775)D15 **** 1770–1780 485/2[70, 1
−] 1913.6 1840.3

Σ(1915)F15 **** 1900–1950 285/2[56, 2
+] 1906.4 1891.6

Σ(1940)D13 *** 1900–1950 483/2[70, 1
−] 1913.6 1840.3

Σ∗(1385)P13 **** 1383–1385 4103/2[56, 0
+] 1371.6 1390.7

Σ∗(2030)F17 **** 2025–2040 4107/2[56, 2
+] 2085.0 2089.2

Λ(1116)P01 **** 1116 281/2[56, 0
+] 1116.0 1116.0

Λ(1600)P01 *** 1560–1700 281/2[56, 0
+] 1626.7 1633.8

Λ(1670)S01 **** 1660–1680 281/2[70, 1
−] 1721.7 1670.9

Λ(1690)D03 **** 1685–1690 283/2[70, 1
−] 1721.7 1670.9

Λ(1800)S01 *** 1720–1850 481/2[70, 1
−] 1836.6 1763.3

Λ(1810)P01 *** 1750–1850 281/2[56, 0
+] 1973.4 1938.6

Λ(1820)F05 **** 1815–1825 285/2[56, 2
+] 1829.4 1814.6

Λ(1830)D05 **** 1810–1830 485/2[70, 1
−] 1836.6 1763.3

Λ(1890)P03 **** 1850–1910 283/2[56, 2
+] 1829.4 1814.6

Λ(2110)F05 **** 2090–2140 285/2[70, 2
+] 1995.0 1957.3

Λ∗(1405)S01 **** 1402–1410 211/2[70, 1
−] 1657.9 1565.6

Λ∗(1520)D01 **** 1518–1520 213/2[70, 1
−] 1657.9 1565.6

Ξ(1318)P11 **** 1314–1316 281/2[56, 0
+] 1332.6 1332.5

Ξ(1820)D13 *** 1818–1828 283/2[70, 1
−] 1938.3 1887.4

Ξ∗(1530)P11 **** 1531–1532 4103/2[56, 0
+] 1511.1 1530.2

Ω(1672)P03 **** 1672–1673 4103/2[56, 0
+] 1650.7 1669.7

resulting parameters α and τ are, however, considerably
different with respect to those of table 2 because the lack
of the parameter A must be compensated by the SU(6)-
invariant energies provided by the hypercentral potential.
This is particularly evident in the case of the negative-
parity resonances, where the energy difference E10 − E01

must be bigger than in the previous case in order to ob-
tain a good reproduction of the masses; in this way, how-
ever, the right ordering of the Roper resonance and the

negative-parity resonances is lost. This means that the
presence of the Casimir C2[SUSF (6)] is needed and its ef-
fect is to shift down the energy of the first-excited 0+ state
with respect to that of the 1−. The effect of this term is
very similar to that of the phenomenological U potential
of the Isgur-Karl model [4].

The mass formula of eq. (8) can be used to add a sim-
ple SU(6)-breaking interaction to a CQM and despite its
simplicity it gives rise to a good description of the baryon



246 The European Physical Journal A

spectrum. Of course for the wave functions, and other ob-
servables, it is not expected to be as successful as for the
spectrum.

Another important feature of this kind of approach
is the model independence of the SU(6)-breaking part of
the Hamiltonian. Looking at eq. (13) it is easy to under-
stand that the values of the parameters of the SU(6)-
breaking part of the Hamiltonian (i.e. the B,C,D,E pa-
rameters) are completely independent of the choice of
H0+AC2[SUSF (6)] which must describe the central mass
value of each SU(6) multiplet.

Finally, we present some comments on the Gürsey-
Radicati mass formula of eq. (8). As we have already ob-
served, the last two terms, that is those with coefficients D
and E, describe up to first order the SU(6) violation com-
ing from the mass difference of quarks, as has been done
in the Gell-Mann–Okubo formula. The remaining terms
are expected to appear once an explicit dynamics for the
quark system is introduced. For example, a spin-flavour–
dependent interaction of the type

Hλσ =

n
∑

i<j

V (rij)(λi · λj)(σi · σj) ,

where λi are the SUF (3) matrices, has been introduced
by Glozman and Riska [21,9] within a Goldstone-boson
exchange model. The matrix elements of such spin-flavour
interaction between states belonging to definite irreducible
representations of SU(6), SUF (3) and SUS(2) can be cal-
culated, neglecting the spatial dependence, as [9,22,23]
〈

[f ]SU(6)[f ]SU(3)[f ]SU(2)
∣

∣

∣
Hλσ

∣

∣

∣
[f ]SU(6)[f ]SU(3)[f ]SU(2)

〉

=4C2(SU(6))−2C2(SU(3))−
4

3
C2(SU(2))−8Nq , (14)

where Nq is the number of quarks [22] and C2(SU(2)) is
given by S(S + 1), S being the total spin. If the spatial
dependence of the SU(6)-breaking terms is not neglected,
this is no more true.

As a conclusion, we can say that the Gürsey-Radicati
mass formula (8) is a simple way to parametrize at the
first order the possible SU(6)-breaking terms of the strong
interaction. The approach we have adopted here is then
to parametrize all the SU(6)-breaking terms by means
of the generalized Gürsey-Radicati mass formula, without
formulating any hypothesis on the microscopic mechanism
(one-gluon exchange, Goldstone-boson interaction, chiral
soliton . . . ).

5 Discussion

We have shown that the Gürsey-Radicati (GR) mass for-
mula is a good parametrization of the baryon energy split-
tings coming from SU(6) breaking. The splittings are
considered as perturbations superimposed to the SU(6)-
invariant levels, which, in our approach, are given by the
hypercentral three-quark potential [6]. The overall good
description of the spectrum which we obtain shows that
the GR mass formula can also be used to give a fair de-
scription of the energies of the excited multiplets at least

up to 2 GeV and not only for the ground-state octets
and decuplets, where it has been originally applied. There
are still problems with the reproduction of some hyper-
ons, in particular for the Λ(1405) and the Λ(1520) res-
onances that come out degenerate and above the exper-
imental values. There are problems in the reproduction
of the experimental masses also in the Σ sector where
both the Σ(1670)D13 and the Σ(1775)D15 four-star res-
onances turn out to have predicted masses about 100 MeV
above the experimental values. A better agreement can be
obtained either using the square of the mass [8] or try-
ing to include a spatial dependence in the SU(6)-breaking
part, which may have, among others, a delta or Gaussian
factor, in order to decrease the breaking with the increase
of the spatial excitation. Although the space dependence
of the SU(6)-breaking terms has to be neglected in order
to apply the GR formula, we can consider the Gürsey-
Radicati SU(6) breaking as the first-order parametriza-
tion of the splittings due to an interaction which depends
also on the coordinates. Within this approximation it can
be used for the description of the SU(6)-breaking effects
independently of the way in which one describes the spa-
tial part. A similar statement is valid if we restrict our-
selves to SU(3) breaking, using a Gell-Mann–Okubo mass
formula. Recently, in [24] a Hamiltonian, containing the
quadratic SU(3) Casimir and a Gell-Mann–Okubo sym-
metry breaking term, has been used for the calculations
of energy splittings both for baryons and pentaquarks.
Although neglecting the explicit spatial dependence may
be dangerous, this is an indication that different effective
models for the baryons at the first order give origin to
a Gell-Mann–Okubo mass formula, independently of the
fact that we consider a chiral soliton model or a bag model
or a CQM, that means independently of which effective
degrees of freedom we use and how we describe from a
spatial point of view the baryon bound states.
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